Synergistic sphere-to-rod micelle transition in mixed solutions of sodium dodecyl sulfate and cocoamidopropyl betaine.
نویسندگان
چکیده
Static and dynamic light scattering experiments show that the mixed micelles of sodium dodecyl sulfate (SDS) and cocoamidopropyl betaine (CAPB) undergo a sphere-to-rod transition at unexpectedly low total surfactant concentrations, about 10 mM. The lowest transition concentration is observed at molar fraction 0.8 of CAPB in the surfactant mixture. The transition brings about a sharp increase in the viscosity of the respective surfactant solutions due to the growth of rodlike micelles. Parallel experiments with mixed solutions of CAPB and sodium laureth sulfate (sodium dodecyl-trioxyethylene sulfate, SDP3S) showed that the sphere-to-rod transition in SDP3S/CAPB mixtures occurs at higher surfactant concentrations, above 40 mM. The observed difference in the transition concentrations for SDS and SDP3S can be explained by the bulkier SDP3S headgroup. The latter should lead to larger mean area per molecule in the micelles containing SDP3S and, hence, to smaller spontaneous radius of curvature of the micelles (i.e., less favored transition from spherical to rodlike micelles). The static light scattering data are used to determine the mean aggregation number and the effective size of the spherical mixed SDS/CAPB micelles. From the dependence of the aggregation number on the surfactant concentration, the mean energy for transfer of a surfactant molecule from a spherical into a rodlike micelle is estimated.
منابع مشابه
Mixed solutions of anionic and zwitterionic surfactant (Betaine): surface-tension isotherms, adsorption, and relaxation kinetics.
Here, we present experimental surface-tension isotherms of mixed solutions of two surfactants, sodium dodecyl sulfate (SDS) and cocoamidopropyl betaine (Betaine), measured by means of the Wilhelmy plate method. The kinetics of surface-tension relaxation exhibits two characteristic time scales, which have been distinguished to determine correctly the equilibrium surface tension. The transition f...
متن کاملMicrostructural Changes in SDS Micelles Induced by Hydrotropic Salt
The addition of low concentrations of the hydrotropic salt p-toluidine hydrochloride (PTHC) to solutions of the anionic surfactant sodium dodecyl sulfate (SDS) promotes the transition from spherical to rodlike micelles. NMR measurements confirm that the hydrotrope adsorbs at the micelle-water interface, thereby screening electrostatic repulsions between the surfactant headgroups. The sphere-to-...
متن کاملEffect of structural transition of the host assembly on dynamics of a membrane-bound tryptophan analogue.
Tryptophan octyl ester (TOE) represents an important model for membrane-bound tryptophan residues. In this article, we have explored the effect of sphere-to-rod transition of sodium dodecyl sulfate micelles on the dynamics of the membrane-bound tryptophan analogue, TOE, utilizing a combination of fluorescence spectroscopic approaches which include red edge excitation shift (REES). Our results s...
متن کاملMiscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed film and aggregate
The adsorption, micelle formation, and salting out of sodium dodecyl sulfate in the presence of sodium chloride were studied from the viewpoint of their mixed adsorption and aggregate formation. The surface tension of aqueous solutions of a sodium chloride-sodium dodecyl sulfate mixture was measured as a function of the total molality and composition of the mixture. Phase diagrams of adsorption...
متن کاملStructure of nonionic surfactant micelles in the ionic liquid ethylammonium nitrate.
The structure of micelles formed by nonionic polyoxyethylene alkyl ether nonionic surfactants, C n E m , in the room-temperature ionic liquid, ethylammonium nitrate (EAN), has been determined by small-angle neutron scattering (SANS) as a function of alkyl and ethoxy chain length, concentration, and temperature. Micelles are found to form for all alkyl chains from dodecyl through to octadecyl. D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2004